A smoothing inexact Newton method for variational inequalities with nonlinear constraints

نویسندگان

  • Zhili Ge
  • Qin Ni
  • Xin Zhang
چکیده

In this paper, we propose a smoothing inexact Newton method for solving variational inequalities with nonlinear constraints. Based on the smoothed Fischer-Burmeister function, the variational inequality problem is reformulated as a system of parameterized smooth equations. The corresponding linear system of each iteration is solved approximately. Under some mild conditions, we establish the global and local quadratic convergence. Some numerical results show that the method is effective.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An inexact alternating direction method with SQP regularization for the structured variational inequalities

In this paper, we propose an inexact alternating direction method with square quadratic proximal  (SQP) regularization for  the structured variational inequalities. The predictor is obtained via solving SQP system  approximately  under significantly  relaxed accuracy criterion  and the new iterate is computed directly by an explicit formula derived from the original SQP method. Under appropriat...

متن کامل

A nonmonotone semismooth inexact Newton method

In this work we propose a variant of the inexact Newton method for the solution of semismooth nonlinear systems of equations. We introduce a nonmonotone scheme, which couples the inexact features with the nonmonotone strategies. For the nonmonotone scheme, we present the convergence theorems. Finally, we show how we can apply these strategies in the variational inequalities context and we prese...

متن کامل

Global and superlinear convergence of the smoothing Newton method and its application to general box constrained variational inequalities

The smoothing Newton method for solving a system of nonsmooth equations F (x) = 0, which may arise from the nonlinear complementarity problem, the variational inequality problem or other problems, can be regarded as a variant of the smoothing method. At the kth step, the nonsmooth function F is approximated by a smooth function f(·, εk), and the derivative of f(·, εk) at xk is used as the Newto...

متن کامل

Smoothing Functions and A Smoothing Newton Method for Complementarity and Variational Inequality Problems

In this paper, we discuss smoothing approximations of nonsmooth functions arising from complementarity and variational inequality problems. We present some new results which are essential in designing Newton-type methods. We introduce several new classes of smoothing functions for nonlinear complementarity problems and order complementarity problems. In particular, in the first time some comput...

متن کامل

Convergence of Inexact Newton Methods for Generalized Equations1

For solving the generalized equation f(x) + F (x) 3 0, where f is a smooth function and F is a set-valued mapping acting between Banach spaces, we study the inexact Newton method described by (f(xk) + Df(xk)(xk+1 − xk) + F (xk+1)) ∩Rk(xk, xk+1) 6 = ∅, where Df is the derivative of f and the sequence of mappings Rk represents the inexactness. We show how regularity properties of the mappings f +...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2017  شماره 

صفحات  -

تاریخ انتشار 2017